Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 79

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Challenge to charge exchange with pure carbon foil in the J-PARC 3GeV synchrotron

Nakanoya, Takamitsu; Yoshimoto, Masahiro; Saha, P. K.; Takeda, Osamu*; Saeki, Riuji*; Muto, Masayoshi*

Proceedings of 20th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.937 - 941, 2023/11

In the J-PARC 3GeV Rapid Cycling Synchrotron (RCS), the 400MeV H$$^{-}$$ beam is changed to H+ beam by a charge exchange foil and accelerated to 3GeV. So far, RCS had used two types of charge exchange foil. One is the HBC (Hybrid Boron mixed Carbon) foil and the other is the Kaneka GTF (Graphene Thin Film). HBC foil is a patented deposition method developed at KEK for the stable production of thick carbon foil. Initially, the RCS used HBC foil produced atKEK. However, in 2017, JAEA had started HBC foil production and has been using it since then. Recently, we have succeeded in depositing thick pure carbon foil, which had been considered difficult to produce by the arc deposition method. As a new challenge, this pure carbon foil was used in the user operation from March 2023. As a result, Pure carbon foils showed less deformation and more stable charge exchange performance than HBC and GTF.

Journal Articles

Recent usage status of charge-exchange stripper foil for 3GeV synchrotron of J-PARC

Nakanoya, Takamitsu; Yoshimoto, Masahiro; Saha, P. K.; Takeda, Osamu*; Saeki, Riuji*; Muto, Masayoshi*

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.629 - 633, 2023/01

In the J-PARC 3-GeV Rapid Cycling Synchrotron (RCS), a 400 MeV H- beam injected from the linac is exchange to an H+ beam by a charge exchange foil and accelerated to 3 GeV. The charge exchange foils mainly used in the RCS are HBC foil (Hybrid Boron mixed Carbon stripper foil), which are made by adding a small amount of boron to carbon rods and using them as electrodes by the arc deposition method. Since 2018, foils produced by JAEA have been used for user operation. So far, no major problems have occurred due to the foils. Meanwhile, the beam power of the RCS has been gradually increased from 500 kW to 830 kW since 2018. As beam power increases, the foil issues were identified to achieve the RCS design power of 1 MW. In this paper, we will report on the recent foil usage status and issue in the user operation.

Journal Articles

Results of 1-MW operation in J-PARC 3 GeV rapid cycling synchrotron, 2

Yamamoto, Kazami; Yamamoto, Masanobu; Yamazaki, Yoshio; Nomura, Masahiro; Suganuma, Kazuaki; Fujirai, Kosuke; Kamiya, Junichiro; Nakanoya, Takamitsu; Hatakeyama, Shuichiro; Yoshimoto, Masahiro; et al.

Proceedings of 19th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.277 - 281, 2023/01

The J-PARC 3GeV Rapid Cycling Synchrotron (RCS) is aiming to provide the proton beam of very high power for neutron experiments and the main ring synchrotron. We have continued the beam commissioning and the output power from RCS have been increasing. In recent years, we have been trying continuous supply of 1-MW high-intensity beam, which is the design value, to a neutron target. We tried to operate continuously for over 40 hours in June 2020. However, some trouble occurred and the operation was frequently suspended. In June 2021, we tried again 1-MW operation but it was suspended due to deterioration of the cooling water performance. Last summer shutdown period, we recovered performance of the cooling water system and retried in this June. In the final case, the outside temperature became extremely high. We could not keep 1-MW power, whereas 600 kW beam was delivered in stable.

Journal Articles

Design and actual performance of J-PARC 3 GeV rapid cycling synchrotron for high-intensity operation

Yamamoto, Kazami; Kinsho, Michikazu; Hayashi, Naoki; Saha, P. K.; Tamura, Fumihiko; Yamamoto, Masanobu; Tani, Norio; Takayanagi, Tomohiro; Kamiya, Junichiro; Shobuda, Yoshihiro; et al.

Journal of Nuclear Science and Technology, 59(9), p.1174 - 1205, 2022/09

 Times Cited Count:6 Percentile:84.97(Nuclear Science & Technology)

In the Japan Proton Accelerator Research Complex, the purpose of the 3 GeV rapid cycling synchrotron (RCS) is to accelerate a 1 MW, high-intensity proton beam. To achieve beam operation at a repetition rate of 25 Hz at high intensities, the RCS was elaborately designed. After starting the RCS operation, we carefully verified the validity of its design and made certain improvements to establish a reliable operation at higher power as possible. Consequently, we demonstrated beam operation at a high power, namely, 1 MW. We then summarized the design, actual performance, and improvements of the RCS to achieve a 1 MW beam.

JAEA Reports

Report of the design examination and the installation work for the radiation shield at the beam injection area in the 3 GeV synchrotron

Nakanoya, Takamitsu; Kamiya, Junichiro; Yoshimoto, Masahiro; Takayanagi, Tomohiro; Tani, Norio; Kotoku, Hirofumi*; Horino, Koki*; Yanagibashi, Toru*; Takeda, Osamu*; Yamamoto, Kazami

JAEA-Technology 2021-019, 105 Pages, 2021/11

JAEA-Technology-2021-019.pdf:10.25MB

Since a user operation startup, the 3 GeV synchrotron accelerator (Rapid-Cycling Synchrotron: RCS) gradually reinforced the beam power. As a result, the surface dose rate of the apparatus located at the beam injection area of the RCS, such as the magnet, vacuum chambers, beam monitors, etc., increases year by year. The beam injection area has many apparatuses which required manual maintenance, so reducing worker's dose is a serious issue. To solve this problem, we have organized a task force for the installation of the shield. The task force has aimed to optimize the structure of the radiation shield, construct the installation procedure with due consideration of the worker's dose suppression. As the examination result of the shield design, we have decided to adopt removal shielding that could be installed quickly and easily when needed. We carried out shield installation work during the 2020 summer maintenance period. The renewal work required to install the shielding has been carried out in a under high-dose environment. For this reason, reducing the dose of workers was an important issue. So, we carefully prepared the work plan and work procedure in advance. During the work period, we implemented various dose reduction measures and managed individual dose carefully. As a result, the dose of all workers could be kept below the predetermined management value. We had installed removal shielding at the beam injection area in the 2020 summer maintenance period. We confirmed that this shield can contribute to the reduction of the dose during work near the beam injection area. It was a large-scale work to occupy the beam injection area during almost of the summer maintenance period. However, it is considered very meaningful for dose suppression in future maintenance works.

Journal Articles

Neutron measurement in the accelerator tunnel of J-PARC Rapid Cycling Synchrotron

Yamamoto, Kazami; Hatakeyama, Shuichiro; Otsu, Satoru*; Matsumoto, Tetsuro*; Yoshimoto, Masahiro

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.494 - 498, 2021/10

J-PARC 3 GeV Rapid Cycling Synchrotron (RCS) provides more than 700 kW proton beam to the neutron target. In order to investigate the influence of the radiation, we intend to evaluate the radiations such as the neutron and gamma-rays, which are generated due to the proton beam loss. If the amount of beam loss is excessive, it becomes difficult to identify the individual neutron and gamma ray. Therefore, we investigated the signal rate of the extraction point of RCS. Preliminary result indicated that we can enough distinguish the neutron and gamma-ray by the liquid scintillator.

Journal Articles

Radiation shielding installation for beam injection section of 3GeV synchrotron

Nakanoya, Takamitsu; Kamiya, Junichiro; Yoshimoto, Masahiro; Takayanagi, Tomohiro; Tani, Norio; Kotoku, Hirofumi*; Horino, Koki*; Yanagibashi, Toru*; Takeda, Osamu*; Yamamoto, Kazami

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.238 - 242, 2021/10

Since a user operation startup, the 3GeV synchrotron accelerator (Rapid-Cycling Synchrotron: RCS) gradually reinforced the beam power. As a result, the surface dose rate of the apparatus located at the beam injection area of the RCS increases year by year. The beam injection area has many apparatuses which required manual maintenance, so reducing worker's dose is a serious issue. To solve this problem, we have decided to adopt removal shielding that could be installed quickly and easily when needed. We carried out shield installation work during the 2020 summer maintenance period. The installation work of the shield has been carried out in a under high-dose environment. For this reason, reducing the dose of workers was an important issue. So, we carefully prepared the work plan and work procedure in advance. During the work period, we implemented various dose reduction measures and managed individual dose carefully. As a result, the dose of all workers could be kept below the predetermined management value. We had installed removal shielding at the beam injection area in the 2020 summer maintenance period. We confirmed that this shield can contribute to the reduction of the dose during work near the beam injection area.

Journal Articles

Initiatives to address the lifetime improvement of HBC stripper foil for 3GeV synchrotron of J-PARC

Yoshimoto, Masahiro; Nakanoya, Takamitsu; Yamazaki, Yoshio; Saha, P. K.; Kinsho, Michikazu; Yamamoto, Shunya*; Okazaki, Hiroyuki*; Taguchi, Tomitsugu*; Yamada, Naoto*; Yamagata, Ryohei*

Proceedings of 18th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.850 - 854, 2021/10

no abstracts in English

Journal Articles

Recent status of J-PARC rapid cycling synchrotron

Yamamoto, Kazami

Proceedings of 12th International Particle Accelerator Conference (IPAC 21) (Internet), p.3027 - 3030, 2021/08

The 3 GeV rapid cycling synchrotron (RCS) at the Japan Proton Accelerator Research Complex (J-PARC) provides more than 700 kW beams to the Material and Life Science Facility (MLF) and Main Ring (MR). In such a high-intensity hadron accelerator, even losing less than 0.1% of the beam can cause many problems. Such lost protons can cause serious radio-activation and accelerator component malfunctions. Therefore, we have been continuing a beam study to achieve high-power operation. In addition, we have also improved and maintained the accelerator components to establish a stable operation. This paper reports the status of the J-PARC RCS over the last two years.

Journal Articles

Dependence of charge-exchange efficiency on cooling water temperature of a beam transport line

Yamamoto, Kazami; Hatakeyama, Shuichiro; Saha, P. K.; Moriya, Katsuhiro; Okabe, Kota; Yoshimoto, Masahiro; Nakanoya, Takamitsu; Fujirai, Kosuke; Yamazaki, Yoshio; Suganuma, Kazuaki

EPJ Techniques and Instrumentation (Internet), 8(1), p.9_1 - 9_9, 2021/07

The 3 GeV Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex supplies a high-intensity proton beam for neutron experiments. Various parameters are monitored to achieve a stable operation, and it was found that the oscillations of the charge-exchange efficiency and cooling water temperature were synchronized. We evaluated the orbit fluctuations at the injection point using a beam current of the injection dump, which is proportional to the number of particles that miss the foil and fail in the charge exchange, and profile of the injection beam. The total width of the fluctuations was approximately 0.072 mm. This value is negligible from the user operation viewpoint as our existing beam position monitors cannot detect such a small signal deviation. This displacement corresponds to a 1.63$$times$$10$$^{-5}$$ variation in the dipole magnetic field. Conversely, the magnetic field variation in the L3BT dipole magnet, which was estimated by the temperature change directly, is 4.08$$times$$10$$^{-5}$$. This result suggested that the change in the cooling water temperature is one of the major causes of the efficiency fluctuation.

Journal Articles

1.2-MW-equivalent high-intensity beam tests in J-PARC RCS

Hotchi, Hideaki; Harada, Hiroyuki; Hayashi, Naoki; Kinsho, Michikazu; Okabe, Kota; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Kazami; Yamamoto, Masanobu; et al.

JPS Conference Proceedings (Internet), 33, p.011018_1 - 011018_6, 2021/03

no abstracts in English

Journal Articles

J-PARC 3-GeV RCS; 1-MW beam operation and beyond

Hotchi, Hideaki; Harada, Hiroyuki; Hayashi, Naoki; Kinsho, Michikazu; Okabe, Kota; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Kazami; Yamamoto, Masanobu; et al.

Journal of Instrumentation (Internet), 15(7), p.P07022_1 - P07022_16, 2020/07

 Times Cited Count:3 Percentile:21.33(Instruments & Instrumentation)

no abstracts in English

Journal Articles

Effects of the Montague resonance on the formation of the beam distribution during multiturn injection painting in a high-intensity proton ring

Hotchi, Hideaki

Physical Review Accelerators and Beams (Internet), 23(5), p.050401_1 - 050401_13, 2020/05

 Times Cited Count:6 Percentile:59.56(Physics, Nuclear)

no abstracts in English

Journal Articles

J-PARC RCS; High-order field components inherent in the injection bump magnets and their effects on the circulating beam during multi-turn injection

Hotchi, Hideaki; Harada, Hiroyuki; Takayanagi, Tomohiro

Journal of Physics; Conference Series, 1350, p.012102_1 - 012102_5, 2019/11

 Times Cited Count:1 Percentile:52.28(Physics, Particles & Fields)

Journal Articles

Beam dynamics study for beam loss mitigation in the J-PARC RCS

Hotchi, Hideaki; Harada, Hiroyuki; Okabe, Kota; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yoshimoto, Masahiro

Kasokuki, 16(2), p.109 - 118, 2019/07

no abstracts in English

Journal Articles

The Residual dose distribution and worker doses in J-PARC 3GeV rapid cycling synchrotron

Yamamoto, Kazami

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.333 - 337, 2019/07

J-PARC 3GeV Synchrotron (RCS) started beam commissioning in 2007. The beam commissioning has been continued to increase the beam power for users. In a high-intensity hadron accelerator such as J-PARC, it is essentially important to reduce the activation due to beam loss and to suppress the exposure of workers. For this purpose, RCS has continued to study and countermeasure for the causes of beam loss from the initial stage of beam commissioning. At present, stable user operation is continuing at 500 kW. This value is half the design beam power of 1 MW, and the residual doses are being maintained enough small so that the maintenance work does not be hindered. In this report, we will introduce the history and measures of the residual doses in RCS so far, and the situation of the exposure dose of workers during maintenance work.

Journal Articles

Recent progress of the J-PARC RCS beam commissioning and operation; Efforts to realize a higher beam power beyond 1 MW

Hotchi, Hideaki; Harada, Hiroyuki; Hayashi, Naoki; Kinsho, Michikazu; Okabe, Kota; Saha, P. K.; Shobuda, Yoshihiro; Tamura, Fumihiko; Yamamoto, Kazami; Yamamoto, Masanobu; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.574 - 578, 2019/07

no abstracts in English

Journal Articles

The Fast measurement of the monitors data with the beam synchronized tag in J-PARC

Hatakeyama, Shuichiro*; Yamamoto, Kazami; Yoshimoto, Masahiro; Hayashi, Naoki

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.789 - 793, 2019/07

The J-PARC Rapid Cycling Synchrotron (RCS) accelerates 400 MeV LINAC beams up to 3 GeV, and distributes them to the Materials Life Science Experiment Facility (MLF) and the Main Ring Synchrotron (MR) in 25 Hz cycle. To prevent radiation damages from the beam loss and also to detect failures of machines an interlock mechanism called the Machine Protection System (MPS) is introduced. If the beam is stopped by the MPS we should recover it quickly for the users of experiment facilities. The MPS related to the beam dynamics is usually diagnosed by beam loss monitors (BLM), beam position monitors (BPM) and current transformers (CT). Data of these monitors should be distinguished MLF or MR since the parameters for the magnet and the RF systems are different between MLF and MR. We confirmed validity of the method to distinguish the beam destination by using the information of the beam synchronized tag from the reflective memory (RFM) when taking the monitor data in 25 Hz.

JAEA Reports

Assessment report on research and development activities in FY2018; Activity "Research and development on J-PARC" (Interim report)

J-PARC Center

JAEA-Evaluation 2019-003, 52 Pages, 2019/06

JAEA-Evaluation-2019-003.pdf:6.61MB

Evaluation Committee of Research Activities for J-PARC for interim assessment of Japan Proton Accelerator Research Complex evaluated the management and research activities of J-PARC center on the explanatory documents and oral presentations during the period from April 2015 to December 2018. This report summarizes the results of the assessment by the Committee with the Committee report attached.

Journal Articles

Study on beam dynamics of high intensity proton beam and mitigation of beam loss in J-PARC RCS

Hotchi, Hideaki

FAS Dayori (Internet), (18), p.20 - 26, 2019/06

no abstracts in English

79 (Records 1-20 displayed on this page)